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UK 
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Abstract. In a wide variety of solids the electronic structure is well described in terms of 
local atomic environment by the recursion method. A theory of perturbations, directed 
towards the calculation of transition matrix elements, is developed in terms of the local 
environment using the recursion method as the unperturbed solution. As well as embody- 
ing this physical concept, the theory permits calculations on systems with many more 
degrees of freedom than other methods. 

1. Introduction 

The calculation of transition matrix elements is a vital step in solid state physics for the 
comparison of theory and experiment. Such techniques as photo-emission, Auger 
spectroscopy, soft x-ray emission, and so forth, all measure transition probabilities 
rather than spectra of electronic states. These experiments could only be compared 
qualitatively with theory in situations where the matrix elements are not constant. 

In the bulk of simple crystals, matrix elements can be calculated using eigenstates 
with particular crystal momentum. However, there is much interest in surfaces, 
dislocations, and amorphous structures where band theory is difficult to apply. It was 
for these systems that the recursion method (Haydock et a1 1975, Haydock 1974) was 
devised. This theory is the generalization of band theory to low-symmetry structures. 
However, like band theory it produces eigenstates and eigenvalue spectra rather than 
the dynamic behaviour of the system. 

The probes used in many experimental methods may be treated as perturbations of 
the system’s Hamiltonian. The perturbation is time dependent so it gives rise to 
transitions between states of different energy. For example the perturbation in 
photo-emission is the dipole potential of the electric field of the photon. For photons of 
a particular frequency, this dipole perturbation gives rise to electronic transitions 
between the ground state and excited states with the photon energy. 

The philosophy of the recursion method is to express the stationary electronic states 
in terms of a sequence of states first near a single atom and then successively, linear 
combinations of states near other atoms. This embodies the physical principle that the 
electronic structure in a region is mainly determined by the atomic environment of that 
region and secondly by the effect on that region of the neighbouring atomic environ- 
ment. This approach has been successful in producing quick and accurate densities of 
states for localized orbital models. 

The motivation of the theory presented here is to apply this philosophy to the 
problem of electronic transitions. There are two aspects of this. In the case of 

46 1 



462 R Haydock 

photo-emission, the probe is extended in nature so that while emission from a particular 
region is related to the local environment, emission takes place from a number of 
regions simultaneously. The second case is that of a localized probe such as a single 
atom ionized by some process. In this case both the probe and the electronic structure 
are determined mainly by the local environment. 

As the recursion method expresses electronic structure in terms of successive 
neighbours of an atom, so the perturbation theory describes the changes in the 
neighbouring states. This comes about in two ways. Not only does a perturbation alter 
the energy of and coupling between neighbouring states, but it also alters the order of 
importance of different neighbouring environments. The theory accounts for both 
effects. 

Although this theory was developed for the purpose of calculating transition matrix 
elements, it has great generality. Its most important property is that it converges for 
continuous spectra-as must a perturbation theory for use in the solid state. Approxi- 
mants for physical quantities converge even when there are singularities in the coupling 
constant. For a perturbation theory to possess this quality, physical quantities must not 
be expressed as power series in the coupling constant, but rather, as is the case, the 
coupling constant enters in a way similar to a Pad6 approximant. The approximation 
includes the presence of singularities in the coupling constant. 

The recursion method expresses the Hamiltonian for a system as a three-term 
recurrence relation, equivalently as a tridiagonal matrix. Once in this form there are 
simple expressions for the eigenvalues, eigenvectors, Green functions and other 
physical quantities. This theory is based on the idea of a perturbed recurrence relation. 
Thus the recurrence coefficients or tridiagonal matrix elements are expressed as a 
power series in the coupling constant. Likewise the basis is also dependent on the 
coupling constant. This means that the perturbed Hamiltonian is tridiagonal in the new 
basis. The changes in the coefficients express the changes in the properties of the 
environment while the change in basis expresses the movement of the environment. 

Computationally the recursion method and this theory have great advantages. 
Systems with a large number of degrees of freedom can be studied because the method 
requires only the storage for a few states (vectors) of the system rather than the storage 
of matrices. Typical calculations with recursion theories involve 10 000 degrees of 
freedom while storage of matrices for such a system would require 10' storage 
locations. It is also found that the approximants converge rapidly so that one gets a 
good result far faster than with other methods. 

The body of the paper is organized in two sections. The first is a description of the 
theory. It is completely general although I point out where simplifications can be made 
in particular cases. There are no proofs although the method of proof is outlined. There 
are also certain matters such as precise limits of convergence which I leave to future 
work. The section is in two parts. The first shows how to obtain the perturbed 
recurrence relation and the second part shows how to use the perturbed recurrence to 
calculate physical quantities. The second section is a discussion of an application of the 
theory to interpretation of optical absorption experiments. 

2. New perturbation theory 

This section will deal mainly with the mathematics of the perturbation theory. The 
notation is summarized in table 1. However, the first point is to define the relationship 
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Table 1. A table of notation used in presenting the recursion perturbation theory. 

~~ 

[XI,, 
X+ complex conjugate transpose of X 
a,, b,, c, matrix elements of J 
a:', bjf', cjf' coefficients of A '  in a,, b,, c. 
e,,, unit column vector with one in component m 
G(E)  energy resolvent operator 
G(E) resolvent matrix in the {z,,,} basis 
G'"(E) coefficients of A '  in G ( E )  
&E) resolvent matrix in the {U,}, {w,} basis 
&')(E) coefficient of A '  in &E) 
6, ( E )  (El, - J,)-' 
C;jf '(~) coefficient of A ' in &(E) 
H Hamiltonian operator 
H hopping matrix among the {z,,,} 
I identity matrix 
I, n X n identity matrix 
J Jacobi or tridiagonal matrix for H +AV 
J"' coefficient of A '  in J 
J, first n columns and rows of J 

the U, w component of X J:' coefficient of A '  in J, 
A scalar strength of perturbation 
P,(E) orthogonal polynomial n 
Qjf."'(E) orthogonal polynomial related to the 

I ,  m element of 
%"{f(x), xo} the nth order residue of f ( x )  at xo 
S matrix of overlaps of {z,,,} 
U matrix made up of columns U, 

U, elements of the left-hand tridiagonal basis 
ujf) coefficient of A '  in U, 
V perturbing potential operator 
V matrix of V in {z,,,} basis 
W matrix made up of columns w, 
w, elements of the right-hand tridiagonal basis 
wjf' coefficient of A'  in w, 
x, intermediate left-hand vector in recursion 
xjf' coefficient of A '  in x, 
yn intermediate right-hand vector in recursion 
y:' coefficient of A ' in yn 
z ,  basis states of H and V 

between the physical description of a system and the mathematical entities involved in 
this theory. Let us think of the physics in terms of some solid. The electrons behave 
quantum mechanically and suppose further that they are well described by an 
independent-particle model, although the theory applies just as well to a many-body 
interaction. 

Select a set of states (2,) to use as a basis for the electronic Hamiltonian. Let H be 
the unperturbed Hamiltonian and V the perturbation. We may express the operators H 
and V as matrices H and V in terms of the basis by means of 

and, 

Vzm = C [VlnmZn (2) 
n 

where [HI,, means the element of matrix H in the nth row and mth column. These 
definitions of H and V do not require (2,) to be orthogonal, nor indeed do they require 
any specification of a scalar product (Haydock 1974). The basis must simply be linearly 
independent for unique specification of H and V. 

The scalar product is now defined independently of H and V. This is by means of 
another matrix S, 

[SI,, = zn 2,. (3) 
Thus the matrix element of H between two states z, and z, is 

From the above definitions, the physics has been expressed in terms of three matrices H, 



464 R Haydock 

V, and S. The results of this calculation are the matrix elements of V between 
eigenstates of H. A compact way of representing this information is by means of the 
resolvent, 

G ( E ) = ( E - H - A v ) - ' ,  ( 5 )  

where A is a scalar expressing the strength of the perturbation V. In terms of the basis, 
the matrix for the resolvent is 

G(E) = (El - H-AV)-', (6) 
where I is the identity matrix. 

Let us construct a similarity transformation for the Hamiltonian, expressed as new 
left- and right-hand basis sets, whose elements in terms of {z , } ,  are given by the columns 
of U for the left-hand basis and W for the right-hand basis. They are to be biorthonor- 
mal, so 

UtW = I (7) 

where the dagger means the complex conjugate transpose of a matrix. A further 
condition is that 

U+(H+AV)W= J, (8) 
where J is a tridiagonal matrix, one which has non-zero elements only on the main 
diagonal and the two adjacent diagonals so that in each row or column there are at most 
three non-zero elements. 

Suppose we are interested in the transitions between two states U and w. The matrix 
element of the resolvent 

[G(E)I,, = utSG(E)w, (9)  

contains all the information about the transitions between the eigenstates of H 
comprising U and w. We now construct the first element of each new basis by finding the 
smallest non-negative power, m, of H+AV such that there are non-zero bo and co for 
some A, 

bocO= utS(H+AV)"w. (10) 

U: = utS/bo, (1 1) 

W O =  (H + AV)"w/co. (12) 

If no such m exists, then [G(E)],, is zero. The choice of bo and co is arbitrary except 
that their product is fixed. Define the first column of U as 

and the first column of W as 

This choice of U: and wo is simple but not unique. Using the expansion of G(E) in 
powers of 1/E, and the fact that m is the smallest non-negative power giving boco 
non-zero, then 

[G(E)I,, = bocou&3wo/Em. (13) 
Having defined uo and wo, we proceed with the construction of the remainder of U 

and W as well as J. Define both uP1 and w - ~  to be zero. Given {U,, . . . , uo, u-~} ,  
{W,, . . . , WO, w-11, {a,-l, . . . , ao}, {b,, . . . , bo}, and {e,, . . . , co}, the iterative construc- 
tion of the vectors t~:+~ and wncl, as well as the matrix elements, a,, b,+l and c,+~, of J, 
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proceeds from 

(14) t t b,+lu~+l =u,(H+AV-a,)-c,u,-l, 

and 

where, 

a, = uA(H+AV)w,, (16) 

(17) b,+lc,+l= [uA(H +AV- U,)  - c,u:-J[(H +AV- u,)w, - b,w,,-J]. 

The u,+~ and w,+~ constitute successive columns of U and W respectively. The choice 
of b,+l and c , + ~  is arbitrary except that their product is fixed. The procedure terminates 
if b,+lc,,+l is zero. The matrix J is defined as follows: 

Tan i f n = m  1 
n, m 3 0 .  

i f n + l = m  
i f n = m + l  [J],, = {  bn+l 

cfl 
l o  otherwise ,) 

The properties in equations (7) and (8) follow simply from the construction. 
Following this transformation, equation (13) takes a much simpler form. If e, 

represents a column vector with one in component n and zero for all other components, 

[G(E)],, = bocoeA(El - J)-’eO/E”. (19) 
So far we have defined U, W, and J as functions of A to yield a simple form of 

[G(E)],,. Note that most of U and W are not needed for [G(E)],, ; this is the recursion 
method of Haydock (1974). For a perturbation theory we need to express U, W, and J 
as power series in A and then show that the calculation separates in such a way that 
evaluating a given quantity to a given order never involves any higher order. 

Before going on to a perturbation theory, let us consider briefly the analytic 
properties of [G(E)], ,  as a function of A. For a perturbation theory we must know over 
what regions of A, U, Wand J are analytic. If, for some N, bN+luk+l or cN+lwN+l are 
zero for all A, then the recursion terminates. If, however b N + l ~ N + l  or c N + ~ w N + ~  is zero 
for only some values of A, this introduces singularities in A into U, W and J at those 
values. The singularities may be of any type including: (i) poles of arbitrary order, 
which are associated with the breaking of a finite-order degeneracy by V; and (ii) 
essential singularities, which are associated with breaking a degeneracy of infinite order 
such as phase change in a many-body system. It is hoped to discuss singularities in A, i.e. 
degenerate perturbation theory, in future papers. For the remainder of this paper, we 
will consider only the case where U, W, and J are analytic in A at zero, that is, 
non-degenerate perturbation theory. For some removable singularities in A it is easy to 
see how to apply the theory for h analytic at zero. 

Let us now define ulf’, wtf’, a:’, btf), clf’ and J”) as the coefficients of A ’  in the power 
series for U,, w,, a,, b,, c,, and J respectively. The initial conditions are that 

t 

(20) U!’, = w y  = 0. 

The coefficients b?’ and c?’ are both non-zero by the assumption that U, W, and J are 
analytic at A = 0. Define U:-’) and w;-” to be zero. The choice of b t )  and ct’ is arbitrary 
except for this and the condition in equation (10) which defines the product of their 
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power series. These b!' and c;' in turn determine ut' and wi' through equations (1 1) 
and (12). 

Having specified the initial conditions, we may define a recursion for u:il, wlfil, 
a ,  , n+l, and c(nlil from equations (14), (15), (16) and (17). Expanding both sides of 
equation (16) in powers of A and equating coefficients of the same power gives 

( 1 )  b(') 

Define a sum to be zero if the upper limit is less than the lower. The calculation of a:) 
involves U: and w, to order 1. Having calculated a, to order 1 and knowing b,, c,, U: and 
w, to order I ,  define 

(22) m)t (1-m) (m)t (1-m) c (4 a ,  +%-- lC .  1. x;)t - - U,, (Ot H + ~ j f - ' ) ~ V  - 
m=O 

Thus x i  is defined to order I .  Similarly, define yn to order 1 as 
I 

m=O 
1 (a;m)w:-"+ b;"w:r;t'). (23) yjf) = Hw'," + Vwlf-1) - 

Applying this to equation (17) and equating coefficients of A '  on both sides gives 

x;m)t yn U-m) . 1 

(24) 

Starting with 1 = 0, increasing 1 by one gives one constraint for bjfi, and clfi,. However, 
they can be chosen to order 1 from x, and yn to order 1. Now doing the same to 
equations (14) and (1  5) gives 

1 b;lmt)tc:;;t)= 
m=O m=O 

Thus equations (21), (22), (23), (24), (27), and (28) define the recursion for the 
perturbation and because one can calculate exactly to order 1 without using any higher 
order, the system fits the main requirement for a perturbation theory. The recursion 
terminates when b ~ ' , ~ ~ ! ~  is zero. This is due to our assumption that J is analytic at 
A = O .  

The alteration to the above which takes into account poles of finite order at A = 0 
involves the introduction of similar poles at A = 0 in U and W and the replacement of 

n + l  and c?il by the lowest-order non-zero coefficient in bncl and c,+~.  Otherwise the 
equations are the same. 

This perturbation theory of J has the same properties that make the recursion 
method so useful. In any computation only a small number of vectors need be stored at 

b (0) 
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any one time. If the matrices H and V can be stored in some condensed form (which is 
usually the case with a local orbital basis for the electronic structure), then the theory 
can be applied to systems with many thousands of degrees of freedom. A further saving 
is made because it is not necessary to calculate the entire matrix J. As with the recursion 
method, one obtains good results with only a 15-dimensional submatrix of J. This 
completes the non-degenerate perturbation theory of U, W, and J. The next part of this 
section deals with the calculation of the transition matrix elements from J. 

The result of the above calculation is a power series in A for the bases {U,,}, {wn}, and 
the matrix J. The resolvent in these bases is simply (EI-J)-'. As A varies, the 
resolvent varies in two ways. The first is due to the variation of J with A and the second 
is due to the variation of the new bases vectors with A. In order to calculate the matrix 
elements of V between eigenstates of H we can now concentrate on J. Because uf) and 
wf' each contain the same eigenvectors of H as U and w, we can be sure that these are all 
eigenvectors of J'O'. Furthermore to order 1 in A, the eigenvectors of H + A V contained 
in U and w are also eigenvectors of J. 

Let us see how the perturbation theory of J can be applied to calculating the matrix 
elements we require. Equating the derivatives with respect to A (at A = 0) of equations 
(1 3 )  and (1 9) gives 

e@l- J'o))-'J'l)(El - J(0))-'eO 

= U ~ + ( E I  - H)-'V(EI - ~ ) - l w f )  +U;)~(EI - H ) - ~ W ~ ) + U ~ O ) + ( E I -  H ) - ' W ~ .  

(29) 
If we now expand equation (29) in terms of the eigenvectors of H and J we find that 
the residues of the second-order poles at energy E of the left-hand side are just the 
matrix elements of V between eigenvectors of H with energy E, weighted by the 
projections of the eigenvectors of H on ub"" and wb". An attempt to derive a 
generalization of equation (29), which produces the matrix element between eigen- 
states with different energies, gives an extra term, proportional to the difference in 
energy involving a matrix which is not tridiagonal like J"): 

eA(EOI- Jco')-'[Jc')+ ( E ,  -EO)U(o)tW(') ](Ell - J'O))-'eO 
= ~r'~(Eol -  H)-'V(ElI - H)- 1 WO (0)  + uf)+(EJ - H)- 1 WO (1) 

+ ut"(E,I - H)-'W~''. (30) 
In general the matrix U(o)tW(l) is not tridiagonal and so it requires the full storage of a 
matrix. 

A time-dependent perturbation such as the electric dipole in photo-emission 
involves transitions between states of different energies and so equation (30) would 
seem appropriate. However, if we put the problem in a different way, we can obtain the 
desired result using equation (29). The way of doing this is to include the perturbing 
force in the unperturbed Hamiltonian as a separate, non-interacting entity, and then 
make the perturbation the interaction between them. 

For example, suppose we wish to calculate matrix elements for photo-emission. 
Rather than make V the time-dependent dipole potential, include in the Hamiltonian a 
photon of energy Aw. There is no electron-photon interaction in H but V is now the 
dipole potential. V couples states consisting of an electron and photon with states 
having only an electron. Hence, the transitions conserve the total energy of the system 
and equation (29) applies. This approach doubles the size of the basis since states for 
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the electron and photon must be included as well as the purely electronic states. A 
careful choice of U and w avoids introducing degeneracies which V splits. 

Having now established what we wish to calculate, let us proceed to express 

(31) [G(l’(E)]uw = eA(El- J‘o))-lJ‘l’(El - J (0)  ) -1 eo, 

@”(E) = (El - J ( O ) ) - ’ .  

in terms of polynomials in E. We can define a sequence of approximants to 

(32) 

These are the G:’(E) obtained by using JLo’ which consists of the first n rows and 
columns of J ‘ O ) ,  instead of J‘O)  in equation (32) .  The various elements of @’(E) can be 
calculated by taking the ratio of the cofactor and the determinant of (El, - J;”). Each 
of these objects is a polynomial in E, and because J‘O’ is tridiagonal, there are simple 
recurrence relations for these polynomials. I will not prove these relations here, but 
they all follow from the tridiagonal form of J‘O) and the determinantal formula for 
elements of the inverse of a matrix. 

First we define the inverse elements of (El, - J:’) as 

[ & @ ( E ) ] 1 m  = e:(El, - Jf))-’em = Qjf”(E)/P,(E). (33) 

The recurrence relations for P,(E), which is proportional to the determinant of 
(El, - J‘,“’), are: 

P-l(E) = 0, P,(E) = bp’, 
P, + 1 ( E )  = (E  - U io’)Pn (E) /  b Ip’ - c Ip’P, - 1 (E) /  b Lo? 1. (34) 

The Qlf.”(E) are proportional to the cofactor of the I ,  m element of (El, - Jf’). Their 
recurrence relations are: 
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The matrix elements of V between eigenstates of total energy Eo are given by the 
second-order residue at Eo of [Gf)(E)loO. This is given by 

where P,(Eo) = 0. The nth approximant has n eigenstates to approximate those of H. 
[&')(E)loo approximates [d"'(E)]OO in the sense that the contour integrals around the 
spectral points of each, of any polynomial up to degree 2n - 1 are the same. However 
when calculating densities in energy, the discrete spectrum of the nth approximant is 
often too spikey. Some method of smoothing must be used. Any method which does 
not alter the property of the integrals over polynomials is fine. 

In practice J, can be calculated where n is less than several hundred. The matrix 
elements of J fall into two regions. Those for small n which give information about the 
distribution of spectral weight with energy and for large n which determine band limits 
and van Hove singularities. There is no sharp boundary between regions and the 
distinction is a matter of judgment. J, must be calculated for n sufficiently large to 
reach the asymptotic region. Once this is done, a smooth spectrum may be obtained by 
a continuation of J, based on knowledge of the singularities, or by obtaining bounds on 
the indefinite integral of [&;'(E)]00 or [ ~ ~ ' ( E ) l o O  by varying a,,,, b,,,, or c,+~ and then 
differentiating the bound to give a smooth density. I hope to discuss this in a future 
paper. 

A number of simplifications are possible in special cases. Firstly, b, and c, can 
always be chosen to be the same requiring one-third fewer numbers to store. When H 
and V are self-adjoint and uo and wo are identical, then U, and w, are all identical and 
hence the store required is halved. Also, a basis may be chosen so that H and V are 
real. If uo and wo are real, this also saves store. It should be noted that even without the 
savings mentioned above, at most a small number of vectors need be stored at any time. 
Hence, this perturbation theory retains the computational advantages of the recursion 
met hod. 

The perturbation theory in the first part of this section developed J to arbitrary 
order in A. For the calculation of matrix elements, we require J only to first order in A. 
However, it is conceivable that one would wish higher-order terms in the series for the 
resolvent 

G(E)  = (El - J)-', (43) 
These are easy to calculate by a generalization of the method for [G"'(E)]oo. It only 
involves more products of the [G'O'(E)]lm which are expressed in terms of the P, ( E )  and 
the Qjf."(E). These terms may be related to terms in G(E) by the transformation U'"" 
and W'O'. 

3. Conclusion 

Unfortunately there are no non-trivial systems where this perturbation theory can be 
worked analytically. The simplest system which absorbs by means of electrons making 
interband transitions is an extended polymer or linear chain. Although the recursion 
method can be performed to give the density of states analytically for this case, 



470 R Haydock 

calculation of the optical absorption cannot be done analytically. Since the computa- 
tions involved in doing the optical absorption of the linear chain are the same as for 
optical absorption of any other system, the application of this perturbation theory will 
have to wait for a future paper where there is sufficient space. 

The recursion method for calculating the density of states has been applied to a wide 
variety of systems and large numbers of atoms. This perturbation theory is more 
complicated than the recursion method, however, to calculate matrix elements for say, 
photo-emission, requires only four times the store necessary for the density of states. 
The factor of four comes from the necessity of including in the Hamiltonian electronic 
states both with and without the photon and the storing of vectors to both zeroth and 
first order in the perturbation. Although a factor of four is lost in the number of atoms 
in the cluster, one only loses a factor of about two in the time for the calculation. 

The advantages of this perturbation theory are similar to those of the recursion 
method. First, the arrangement of atoms is arbitrary, so that the method applies where 
there are no bands. Second, the method does not involve complete diagonalization of 
the Hamiltonian. The physical information is extracted from what might be called a 
‘partial diagonalization’. Thirdly, the results converge rapidly with increasingly com- 
plete ‘partial diagonalization’ but always before complete diagonalization, and there is 
an error theory. 
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